Dilaton Quantum Gravity
A Functional Renormalization Group Approach

Tobias Henz
with Jan Martin Pawlowski & Christof Wetterich

Institute for Theoretical Physics, University of Heidelberg

TR33 Winter School, December 2012
Outline

1. **Introduction: Asymptotic Safety & Quantum Einstein Gravity**
 - Nonrenormalizibility and Asymptotic Safety
 - Beyond Perturbation Theory: Functional Renormalization
 - Challenges & Open Questions

2. **Scalar Tensor Theories and Dilatation Symmetry**
 - Dynamical Constants
 - Results

3. **Summary and Outlook**
Renormalizibility and Quantum Gravity

- Einstein-Hilbert action

\[\Gamma [g_{\mu\nu}] = \frac{1}{16\pi G_N} \int d^d x \sqrt{g} \left(2\Lambda - R[g_{\mu\nu}] \right) \]

- mass dimensions of the couplings

\[\text{dim}(\Lambda) = 2 \]
\[\text{dim}(G_N) = 2 - d \]

\[\implies \text{Perturbatively not renormalizable if } d > 2. \]
Alternative Approaches

Introduction of radically new concepts
(Super) String Theory, Loop Quantum Gravity, ...

What if we give up perturbation theory instead?
The Asymptotic Safety Scenario
Alternative Approaches

Introduction of radically new concepts
(Super) String Theory, Loop Quantum Gravity, ...

What if we give up perturbation theory instead?
The Asymptotic Safety Scenario
Asymptotic Safety

Weinberg, 1979

A theory is said to be asymptotically safe if the essential coupling parameters approach a fixed point as the momentum scale of their renormalization point goes to infinity.

Working translation

Quantum gravity is considered asymptotically safe if the UV-critical surface is finite dimensional and if the dimensionless coupling constants cease to increase if the momentum scale k goes to infinity, but approach an ultraviolet fixed point instead.
Wetterich Equation

$$\partial_t \Gamma_k = \frac{1}{2} \text{STr} \left[\frac{1}{\Gamma_k^{(2)} + \mathcal{R}_k} \partial_t \mathcal{R}_k \right] , \quad t = \log(k/k_0)$$
Wetterich Equation

\[\partial_t \Gamma_k = \frac{1}{2} \text{STr} \left[\frac{1}{\Gamma_k^{(2)} + \mathcal{R}_k} \partial_t \mathcal{R}_k \right], \quad t = \log(k/k_0) \]
The Flow Diagram of Quantum Einstein Gravity

Reuter, 1998

Coupling Constants approach a nontrivial UV Fixed Point

Prospect of Gravity being Asymptotically Safe
The Flow Diagram of Quantum Einstein Gravity

Christiansen, Litim, Pawlowski, Rodigast, 2012

Stable Infrared Scenarios

→ Prospect of UV and IR consistent theory
Asymptotically Safe Quantum Gravity

<table>
<thead>
<tr>
<th>FRG Technicalities</th>
<th>Coupling to SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regulator Dependence</td>
<td>- Yang Mills Theory</td>
</tr>
<tr>
<td>- Background Dependence</td>
<td>- Background Dependence</td>
</tr>
<tr>
<td>- Truncation Stability</td>
<td>- Asymptotic Freedom</td>
</tr>
</tbody>
</table>

- **Infrared Limit**
 - Trajectory UV \rightarrow IR
 - GR as limiting case?

- **Hierarchy Problem**
 - $M_{SM} \approx 10^2$ GeV
 - $M_{Planck} \approx 10^{19}$ GeV
Dynamical Constants I: Scalar-Tensor Theories

\[\Gamma_k [g_{\mu \nu}] = \frac{1}{16\pi G_{N,k}} \int d^d x \sqrt{g} (2\Lambda_k - R[g_{\mu \nu}]) \]

\[\Gamma_k [g_{\mu \nu}, \chi] = \int d^d x \sqrt{g} \left(V_k[\chi] - F_k[\chi] R[g_{\mu \nu}] + \frac{1}{2} g_{\mu \nu} \partial^\mu \chi \partial^\nu \chi \right) \]

Assumptions:

- \(O(R) \) truncation
- no wave function renormalization
- curved background spacetime & optimized cut-offs
Dynamical Constants I: Scalar-Tensor Theories

\[\Gamma_k [g_{\mu\nu}] = \frac{1}{16\pi G_{N,k}} \int d^d x \sqrt{g} \left(2\Lambda_k - R[g_{\mu\nu}] \right) \]

\[\Gamma_k [g_{\mu\nu}, \chi] = \int d^d x \sqrt{g} \left(V_k[\chi] - F_k[\chi] R[g_{\mu\nu}] + \frac{1}{2} g_{\mu\nu} \partial^\mu \chi \partial^\nu \chi \right) \]

Assumptions:
- \(\mathcal{O}(R) \) truncation
- no wave function renormalization
- curved background spacetime & optimized cut-offs
Dynamical Constants II: Dilatation Symmetry

- Dilatations ↔ Conformal Transformations
 \[g_{\mu\nu}(x) \rightarrow \Omega(x)g_{\mu\nu}(x) \]
 with \(\Omega = \text{const} \).
- Dilatation ↔ global resetting of the physical scale
- Dilatation Symmetry ↔ Physical Scale is introduced only by expectation value of the scalar field
- Arising Goldstone Boson: Dilaton

Dilatation Symmetric Actions

\[\Gamma \text{ is invariant under dilatations} \]
\[\Updownarrow \]
all couplings have scaling dimension 0.
\[(d = 4: F \propto \chi^2, V \propto \chi^4) \]
Limiting Cases

dimensionless field $\tilde{\chi}$ ($d = 4 : \tilde{\chi} = k^{-2}\chi$)

Ultraviolet: $\tilde{\chi} \to 0$
- $\chi \to 0$
- $k \to \infty$
- V, F power series in $\tilde{\chi}^2$
- Percacci, 2009

Infrared: $\tilde{\chi} \to \infty$
- $\chi \to \infty$
- $k \to 0$
- V, F power series in $\tilde{\chi}^{-2}$
- current project, 2012
The Infrared Limit I: Expansions

- Dilatation Symmetric Couplings have vanishing β-functions
- Closed set of flow equations to each order in $\tilde{\chi}^{-2}$
- Fixed point value only in constant order nontrivial

\Rightarrow stable Einstein-Hilbert infrared limit
The Infrared Limit II: Dilatation Symmetry

Dilatation Symmetric Infrared Scenario

\[V = 0 \text{ and } F = \xi \chi^2 \]

\[\Gamma_{k \rightarrow 0} = \int d^d x \sqrt{g} \left(\frac{1}{2} g_{\mu \nu} \partial^\mu \chi \partial^\nu \chi - \xi \chi^2 R \right) \]

- Flow diverges at conformal coupling parameters
- Weyl Anomaly is realized
Summary and Outlook

- Multifaceted evidence for *asymptotic safety* scenario
- Dilatation symmetric *infrared limit*

- Stability surveys
- Continuation past asymptotic cases

Thank you very much!